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EXTENSION OF AN ELASTIC SPACE WITH AN ISOLATED STIFF ROD* 

G.P. NIKISHKOV and G.P. CHEREPANOV 

The problem of the extension of an unbounded elastic medium with an 
isolated rectilinear thin elastic finite rod placed rigidly therein is 
considered. The elastic modulus of the rod is considered to be very much 
larger than for the medium. An approximate asymptotic solution of the 
problem is proposed based on the introduction of a boundary layer in the 
neighbourhood of the rod; a formula is obtained for the optimal length 
of the bonding fiber. The boundary layer problem is then solved by the 
method of asymptotic T-integration /l/, which naturally leads to the 
same results. Numerical experiments on a computer, using the finite 
element method, are presented. One result of the numerical computation 
is utilized to construct an analytic solution. An estimate is given for 
the accuracy of the approximate analytic solution. 

1. Formulation of the Problem. Let a thin rectilinear elastic rod (filament) of 
circular cross-section be placed in an unbounded homogeneous and isotropic elastic medium that 
experiences unilateral extension along the direction of the rod at infinity (Fig.1). The 
ideal adhesion conditions, hold at the contact boundary, i.e., all the displacement components 
are continuous everywhere. 

We introduce a cylindrical Orz coordinate 
system (the z axis coincides with the axis of the 
rod, and the point 0 is the midpoint of the rod). 
Let 1 be half the rod length, r0 the radius of its 
cross-section, p the tensile stress u,at infinity, 
E ??I* vn8 and Et, vi Young's modulus and Poisson's 
ratio of the matrix (basic material) and rod 
material, respectively. 
parameters V,,,,vf, h = roil < 1, &=E,IE,< 1 in this 
elasticity (by assumption the rod is thin and very 

Fig.1 

There are four positive dimensionless 
three-dimensional problem of the theory of 
much stiffer than the matrix). 

The distribution along z of the mean stress o = o, (over the section) in the rod, and 
the tangential stress '(==,r_ on the lateral surfaces of the cylindrical rod, are of greater 
interest. They are related by the equilibrium equation 

r = -'i~,doldz 

As e-0 (an "inextensible" rod) the solution of this problem was first proposed in /l/ 
as one of the examples of applying the method of asymptotic P-integration. However, calcula- 
tion errors were made during the solution, as Eshelby /2/ pointed out when he proposed the 
solution of this problem as E-O using the method /3/ of solving approximately the field 
theory problem of a conducting cylinder in the parallel electrostatic field of a dielectric. 

Eshelby indicated that the method by which Van Dyke solved the electrostatic Landau and 
Lifshitz problem in the appendix to Taylor's paper /4/, and also the Hallen method of solving 
the same electrostatic problem /5/, leads to the same results. 

The analytical and numerical solution of problems for small E and A , presented below 
shows, however, that for any arbitrarily small e the quantities 0,~ and amax in a rod can be 

as different as desired (for instance, by one or two orders) from the values determined by 
the formulas in /2/, depending on the values of the other small parameter 1 . Therefore, the 
solution of /2/ generally turns out to be unsuitable for any arbitrarily small a. 

2. Approximate analytic solution. Let us first consider the limiting case of an 

infinitely long rod (h = 0). In this case, the exact solution /6/ of the Lam&equations, 
which satisfies the adhesion conditions for r = r. and the conditions at infinity as r--t 00 
by assuming, for simplicity, that v, = v,, can be written as follows (W is the displacement 
component alonq the z axis) : 

(2.;; 
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When V, f vi , the errors in (2.1) for the characteristic quantities 0, and w do not 
exceed several percent for all cases of practical significance. (In the compression case, 

when p<O, the stresses aV and ale in a fiber will be tensile for Y,>v~ and, consequently, 
can result in splitting of the fiber and failure of the composite in certain cases, despite 
its small value /6/j. 

We will now examine the case of a rod of finite, but quite large, length when *>b>O. 
The diagram of the displacement w in the sections 2 = const will recall the velocity profile 
in a viscous fluid boundary layer. Consequently, it is natural to make the following assump- 
tions in a certain neighbourhood of the rod (the boundary-layer approximation): 

Omitting small terms in the equations of the theory of elasticity, in view of these 
assumptions, we arrive at the boundary layer equations 

(2.2) 

Here w is the rod displacement along the z axis, r,, is the tangential stress, and G,,, is 
the shear modulus 

The solution 

. . . 
of the matrix. 
of (2.2) has the form 

For r=r* on the boundary layer boundary, the solution of (2.3) should "merge" with 
the unperturbed solution tii& = pIEm (r* is the merger radius). We hence obtain the follow- 
ing equation /7/: 

(2.4) 

Together with the last equation in (2.31, this serves to determine s(z) and W(z) in the 
boundary layer. We will write the solution of these equations that satisfies the symmetry 
conditions z 70, W=O for z =*O, by selecting the "merger" radius r* as follows: 

where a is a certain merger parameter (of the order of one). We find 

u-p-- 
I 

k: 

E L-amsx chT E 1 

W +z-m(t)+ln+ 
m m 

(2.6) 

Here u,,, is the highest value of D (for z = 0 ) . 

The stress (I at the ends of the rod is.negligible; consequently, it is possible to set 
0=0 for 2=-f-l. 

Hence, by using (2.6) we find 

We use the data from a numerical computation of the initial problem by the finite-element 
method (see Sect.4 below) to determine the parameter a. 
and v,=0.3 we obtained umar = 1130~. 

In particular, for e = iP,A = 10-s, 

a = 0.738. 
In this case we use (2.7) for k<l, and we obtain 

It is seen fro=. (2.7) that as the length of the bonding rod increases the maximum length 
increases monotonically. The following interesting corollary results from the solution. We 
denote the fracture strength of the rod ,by o,,. On the basis of (2.6) and (2.71, if 



334 

h%l+<,<60 6a= e 
a(1 iv,) 

arch p 
P -fQ 

,233 

then the bounding rod is fractured in two. The asymptotic solution of inequality (2.8) re- 
sults for small h in the explicit expression 

1 > r0 Iln (1/6,)i(26,)p (2.9) 

The quantity on the right side of (2.9) plays the part of an optical bonding fiber length 
for which its strength properties are used to the maximum extent. 

3. Approximation solution by the method of asymptotic r-integration. 
Following /l/, we replace the action of the thin fiber on the matrix by the action of a lumped 
force of strength 2 distributed along the z-axis and directed along this axis (from the equili- 
brium condition Z = 2n~r,). We have /6, 7/ 

S(U?Z,-UijTZjUi, *)dZ=O (i, j=i,2,3) (3.1) 
r 

Here U is the elastic potential of unit volume, (J*, are stresses, ui is the displacement, 
ni is the external unit normal to the closed surface z comprised of two endfaces z = const and 
two coaxial circular cylinders 2, and 2, of identical length A (where l> A>,*‘); Z,:r = 
Ed, where e, < r,;Z, : r = r+‘, where 1 > r*’ > r,,. The integral (3.1) is negligibly small on the 
endface part of the surface Z as compared with the other components (since A 5 r*') while 
n, = 0 on the cylinders Z, and z, . Consequently, from (3.1) we obtain (taking account of 
the axial symmetry) 

According to the rules of r-integration /l, 6/ and the equilibrium equations, we have 

(3.3) 

s (. ..)dI:= s (~~OU:,,+U,OU:,~~Z=U:.~ s t,,OdZ + IL;, i s ur” dx = Zu,“, z 1m.A 
2. & zr L 

The superscripts 0 and s refer to the regular (unperturbed) and singular (perturbed) 
components, respectively. 

According to (3.2) and (3.3), we obtain 

u!,, It-o- U:,*l?=r. (3.1) 

We obviously have 

0 P ~z,.=z-_* u:,,== 2’ (4 In 
+ + W' (2) (E = 2mr0) 

m m 

We hence obtain relationship (2.4) in conformity with (3.41. The further progress of the 
solution is analogous tothat described in Sect.2. 

The selfinduced component in the expression for u,O , equal to 

is omitted as being negligibly small compared with pzlE,. 

4. Computation by the finite-element method. To confirm the relationships 
obtained, computations were performed by using a perfected version of the NEPTUN program /8/. 

A cylinder of radius R,and altitude 2L, in which a cylindrical rod of radius r,, and 
length 2J is palced, was used as the computational scheme to solve the problem. The cylinder 
(matrix) and rod materails have different elastic characteristics. The following dimensions 

were taken for the computation: re = 0.5, I = 50, R, = 100. L = 150 (1= 10-*). 
By virtue of symmetyy, the upper half of the cylinder with the displacement and stress 

boundary conditions w=O for s=O and a,=p for z= L was considered in the solution. 
Isoparametric quadratic elements with eight nodes were used to construct the discrete 

model in the rz plane. The finite-element mesh is generated automatically by using the para- 
metric assignment of coordinates. It consists of 176 elements and has 1166 degees of freedom. 
The mesh is made denser in the domain adjoining the rod. 

The results of computing the normal stress o in the rod and the tangential stress 5 on 
the rod-matrix boundary are presented in Fig.2a and b for different E= Em/Et and are shown 

by the dashed lines 1-5 corresponding to the values E = 10-1, lo-*. iOeJ, iO_', 10-P. It was assumed 



here that Poisson's ratios are Y,= vt= 0.3. 
are shown by the solid lines. 

Fig.2a Fig.Zb 
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The same quantities computed by means of (2.6) 

Good agreement is observed between the numerical and analytical relations for the normal 
stresses in the rod. The maximum value IJ,,_ is predicted almost exactly by (2.6). The great- 
est differences in c are observed on approaching the end of the rod, which is due to neglect- 
ing the normal stress at the ends of the rod in deriving (2.6). The differences between the 
computed and analytical values of ? are greater, as is natural, since the tangential stress 
is a derivative of (r . Nevertheless, these differences are not large for small E. 

To verify the influence of the matrix size (the rod dimensions are unchanged) on the 
solution obtained by the finite-element method, repeated computations were made with R,= 200, 
L = 250. For E = 10-6 an increase of less than 2% was obtained in the stress. 

A complete numerical investigation of the problem as a whole is difficult because there 
are four dimensionless free parameters a, A, %l and ~1 in the problem. Numerical computations 
were performed for E=O (absolutely rigid rod) with v,,,~= 0.3 and v,,=O.49. From the 
analytic solution 

1. 
2. 

3. 

4. 

5. 

6. 
7. 
8. 

‘mm 1 1 +%JI2 
- =l$-v,l = 1.146. 
%.X2 

This quantity equals 1.110 according to the results of the numerical computations. 
Sects.l-3 were written byG. P. Cherepanov, and Sect.4 byG.P. Nikishkov. 
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